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Introduction

Despite the great advances in genomic sequencing 
technologies and their accompanying techniques, 
automated clinical-grade interpretations of this data 
remain challenging.1,2  This is primarily due to high 
levels of variation in such data across both patients 
and technologies.3,4,5  

As of June 2015, there have been 80 million variants 
identified in the human genome, the majority of which 
have unclear clinical significance.6  Last year, the 
National Institute of Standards and Technology 
reported that variant and genotype calling cannot be 
done confidently in ~23% of the human genome, due 
to the high discordance across technologies. 7  
Ultimately, these challenges prevent the development 
of clinical sequencing analysis pipelines that do not 
require final manual curation by experts.  

Genomic classification is a framework that has recently 
demonstrated promise for overcoming challenges of 
variation in cancer genomics research.8,9  Here we 
apply a supervised genomic classification approach in 
the context of the highly-polymorphic structurally-
variant Rh blood antigen system to demonstrate the 
generalizability of this framework for clinical 
phenotype prediction. 

System Concept

The ultimate goal of this work is to implement the 
methods described in a clinical sequencing analysis 
pipeline. Herein a model, previously trained on 
labeled  genomic  data, would be applied  to predict 
patient phenotype based on features of their genome. 

Assuming that in the coming years genomic data will 
be routinely included in a patient’s electronic health 
record, such a system would eliminate the need for  
potentially costly laboratory tests.

Discussion
With further feature set development and 
optimization, we believe this model can achieve 
clinical-grade performance and be in the position to 
replace the laboratory test upon whose data it was 
trained.  Assuming that in time genomic information 
will be stored routinely in patient electronic health 
records, this could potentially reduce the aggregate 
cost of diagnostic laboratory procedures.  

Additionally, this study demonstrates generally how 
machine learning frameworks may be used to build 
effective and reliable bioinformatics-informed clinical 
decision-making aids.

Future Work 
There are two more advanced techniques that could 
greatly improve these preliminary results: 

(1) Use well-established bioinformatics tools to 
characterize better characterize genomic structure 
and combine into a representative feature set.

(2) Use feature learning techniques to engineer more 
informative feature sets. 

(3) Use more advanced classifiers.  
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Methods

General 
As our input data, we use whole genome sequencing 
alignment data from 93 patients along with their 
associated antigen serological test results as 
phenotype labels.  Over 16 feature type-sets, we 
extract feature data, train a multi-label decision tree 
classifier and test its performance across 10 iterations 
of 10-fold cross-validation.  

Feature Selection 
The 16 feature type-sets were developed based on 
three criteria.  

1.  Genomic positions selected.  
a.  Whole exome.  
b.  Only positions identified in variant databases as 

associated with different genotypes.   

2.  Quantifier used at each genomic position:  
a.  Max base coverage.   
b.  Mean base coverage.  
c.  Variance base coverage. 
d.  Categorically coding for the base called at that 

position. 

3.  Whether the feature data was encoded or not.  
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Results 

The best feature typeset ‘genotype mean encoded’ achieved an 0.814 +/- 0.014 success rate for combined phenotype calls 
(i.e. accurately predicting all phenotypes in one prediction) and much greater success rate for individual antigen 
phenotype calls, within the composite prediction. The second best feature typeset ‘exomic max nonencoded’ achieved a 
highly similar success rate. Of note, 6 of the 16 feature typesets achieved a success rate over 0.75.    
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